SYNTHETICALLY USEFUL OXIDATIONS AT SOLID SODIUM PERMANGANATE SURFACES

Fredric M. Menger* and Chuan Lee

Department of Chemistry, Emory University, Atlanta, Georgia 30322, U.S.A. Summary: Solid NaMnO_a·H₂O is an efficient and selective oxidizing agent.

We recently reported the observation that alcohols in benzene can be oxidized to ketones by solid KMn0_4^{1} . Traces of water are critical to the reaction. Addition of $\text{CuS0}_4 \cdot (\text{H}_2\text{O})_5$ catalyzes the oxidation and permits high yields of product at room temperature. Easy work-up (filtration of excess permanganate and removal of solvent) constitutes a major advantage of the procedure. We now report that solid <u>sodium</u> permanganate monohydrate² oxidizes a variety of organic functionalities under mild conditions without the need of an additive (<u>Table I</u>). As seen from the table, the solid reagent manifests greater selectivity than that found with permanganate in solution^{3,4}. Thus, the heterogeneous oxidations proceed smoothly with alcohols, sulfides, aldenydes, etc., but not with alkenes, alkynes, epoxides, and amides. Allylic alcohols are oxidized more <u>slowly</u> than saturated alcohols (entries 1 and 9). This interesting reversal in reactivity cannot be exploited for selective synthetic purposes because 1-octen-3-ol was found to inhibit the oxidation of 2-octanol in hexane over solid NaMnO₄ (as if the allylic alcohol blocks productive binding sites on the crystal surface). In any event, the mildness, yield, easy work-up, and unusual selectivity of oxidations mediated by solid NaMnO₄ suggest that synthetic methodology based on crystal surfaces is a topic worthy of further research.

In a typical run, 0.39 g (3 mmol) of 2-octanol in 15 ml hexane was magnetically stirred with 1.92 g (12 mmol) of $NaMnO_4 \cdot H_2O$ at refluxing temperature for 2.5 hours. Analysis of the liquid phase by GLC indicated complete conversion of alcohol to ketone. After filtering the reaction mixture, the solvent was removed to give 2-octanone in 95% yield. Control experiments with oxidant dried over P_2O_5 at 50° and 0.3 mm for 24 hours gave only 9% yield; the reactivity could be restored with 2-3 drops of water added to the reaction mixture. Larger scale oxidations were carried out by adding every hour for 4 hours 8 g oxidant to 150 ml refluxing hexane

1655

containing 6.5 g 2-octanol and then refluxing another 16 hours to secure 2-octanone of high purity in 84% isolated yield. Reactions were generally 3 times slower in methylene chloride than in hexane⁵.

Substrate		Product	Solvent	Temp.(°C)	Time(h)	Yield(%)
1.	2-Octanol	2-Octanone	Hexane	69	2.5	95
2.	Cyclohexanol	Cyclohexanone	Hexane	69	1.5	100
3.	5α-Androstan-17β-ol	5α-Androstan-17-one	CH2C12	41	24	84
4.	1-Octanol	Octanoic acid ^C	Hexane	69	5	67
5.	Octyl aldehyde	Octanoic acid ^C	Hexane	69	4.5	77
6.	Benzyl alcohol	Benzoic acid	Hexane	69	6	81
7.	Benzaldehyde	Benzoid acid	Hexane	69	5	80
8.	2-Cyclohexen-l-ol	2-Cyclohexen-l-one	Hexane	69	24	47
9.	1-Octen-3-ol	1-Octen-3-one	Hexane	69	24	11
10.	l-Tridecene	Lauric acid ^C	Hexane	69	24	13
11.	trans-Stilbene	Benzoic acid Benzaldehyde	^{CH} 2 ^{C1} 2	41	24	4 5
12.	<u>n</u> -Butyl Sulfide	<u>n</u> -Butyl Sulfone	Hexane	69	24	91
13.	<u>t</u> -Butylamine	2-Methyl-2-nitropropane	Hexane	69	24	76
14.	Caproamide	No reaction	сн ₂ с1 ₂	41	24	-
15.	1-Decyne	No reaction	Hexane	69	24	-
16.	1,2-Epoxytridecane	No reaction	Hexane	69	24	-
17.	<u>n</u> -Butylbenzene	No reaction	Hexane	69	24	-

Table I. OXIDATIONS BY SOLID SODIUM PERMANGANATE MONOHYDRATE^{a,b}

^a Reactions were carried out using 3 mmol of substrate. ^b Except for runs 2 and 8, yields are based on weights of isolated product. Work-up included an extraction of the hexane with Work-up included an extraction of the hexane with dilute HC1/NaHSO3.

References and Notes

- 1. F. M. Menger and C. Lee, J. Org. Chem., 44, 3446 (1979).
- $\overline{2}$. This material was used as obtained from the Carus Chemical Co., LaSalle, Illinois. We thank Carus for a free sample.
- 3. D. J. Sam and H. E. Simmons, J. Am. Chem. Soc., <u>94</u>, 4024 (1972). <u>4</u>. R. Stewart in "Oxidations in Organic Chemistry", K. B. Wiberg, Ed., Academic Press, New York, N. Y., 1965, Part A, Chapter 1.
- 5. This work was supported by the National Science Foundation, National Institutes of Health, and Petroleum Research Fund.

(Received in USA 12 January 1981)